UNICOLL

Simulationsprogramm für Kollektor mit Regler

Das Programm UNICOLL kann zur wahlweisen Simulation von verglasten bzw. unverglasten Kollektoren verwendet werden. Neben den Berechnungsverfahren für Kollektoren ist in diesem Programm ein Regelalgorithmus für den Massenstrom vorhanden. Es kann wahlweise der Massenstrom oder die Kollektoraustrittstemperatur als zeitlich variable Größe vorgegeben werden. Wird die Kollektoraustrittstemperatur vorgegeben, so berechnet das Reglermodell den zur Erzielung dieser Temperatur erforderlichen Massenstrom innerhalb eines vorgegebenen Bereichs. Kann die vorgegebene Kollektoraustrittstemperatur nicht erreicht werden, so wird der Massenstrom zu Null gesetzt. Ist der maximale Massenstrom erreicht, so kann die Kollektoraustrittstemperatur auch über den vorgegebenen Wert ansteigen.

Die Kollektornutzwärme wird nach folgender Gleichung berechnet:

$$\dot{Q}_{nutz} / A_{K} = F' \left\{ \tau_{G}^{*} \alpha_{A}^{*} \cdot E_{glob,K} - \tau_{G}^{*} \alpha_{A}^{*} b_{0} \left[E_{dir} ((1/\cos\Theta) - 1) + E_{dfu} ((1/\cos\Theta_{e}) - 1) \right] - k_{0} (w_{Wi}) (\vartheta_{fl,m} - \vartheta_{am}) - k_{1} (\vartheta_{fl,m} - \vartheta_{am})^{2} - \varepsilon_{A}^{*} \cdot \sigma \cdot \left[\varphi_{B} \varepsilon_{B}^{*} (T_{fl,m}^{4} - T_{B}^{4}) + \varphi_{Geb} \varepsilon_{Geb}^{*} (T_{fl,m}^{4} - T_{Geb}^{4}) + \varphi_{sky} (T_{fl,m}^{4} - T_{sky}^{4}) \right] - (C_{K} / A_{K}) (d\vartheta_{fl,m} / dt)$$
(1)

In der ersten Zeile kann die Strahlungsabminderung durch schräg auftreffende Strahlung durch den "Boes-Koeffizienten" b₀ berücksichtigt werden. Die Wärmeverluste (2. Zeile) können in Abhängigkeit von der Windgeschwindigkeit nach folgendem Ansatz berechnet werden:

$$k_0(w_{W_i}) = k_0^* + k_1^* \cdot w_{W_i}$$
 (2)

Eine quadratische Abhängigkeit des Wärmeverlustkoeffizienten von der Tempertaurdifferenz kann durch den Koeffizienten k₁ eingegeben werden.

Die 3. Zeile in Gl. (1) beschreibt den Wärmestrom aufgrund des langwelligen Strahlungsaustauschs des Kollektors mit seiner Umgebung. Dazu wurde der Halbraum über dem Kollektor in drei Bereiche aufgeteilt: Den vom Kollektor aus sichtbaren Teil des Bodens (Temperatur T_B , Emissionsgrad ϵ_B^*), die vom Kollektor aus sichtbaren Gebäudeteile (Temperatur T_{Geb} , Emissionsgrad ϵ_{Geb}^*) und den Himmel (schwarzer Strahler mit der Temperatur T_{sky}). Die Einstrahlzahlen ϕ_{sky} , ϕ_{Geb} und ϕ_B geben den vom Kollektor aus sichtbaren Anteil von Himmel, Gebäudeteilen oder Boden am Halbraum über der Kollektorfläche an.

Der Term der letzten Zeile beschreibt die instationären Effekte aufgrund der Wärmekapazität C_K des Kollektors und des Wärmeträgerfluids.

Nomenklatur:

ttur.	
Kollektorfläche	m^2
Boes-Koeffizient	-
Wärmekapazität des Kollektors	kJ/K
Diffusstrahlung	kJ/hm²
Direktstrahlung	kJ/hm²
Globalstrahlung in Kollektorebene	kJ/hm²
Wirkungsgradfaktor	-
Koeffizient	$kJ/(hm^2K)$
Koeffizient	$kJ/(hm^2K^2)$
Koeffizient	$kJ/(hm^2K)$
Koeffizient	$kJ/(m^3K)$
Nutzwärmestrom Kollektor	kJ/h
thermodynamische Temperatur	K
Zeit	h
Windgeschwindigkeit	m/h
Absorptionsgrad	-
Emissionsgrad	-
Einstrahlzahl	-
Transmissionsgrad Glasabdeckung	-
Winkel zwischen diffuser Sonneneinstrahlung und Flächennormalen	0
Winkel zwischen direkter Sonnenein- strahlung und Flächennormalen	0
mittlere Fluidtemperatur	°C
Umgebungstemperatur	°C
Stephan-Boltzmann-Konstante	
	Kollektorfläche Boes-Koeffizient Wärmekapazität des Kollektors Diffusstrahlung Direktstrahlung Globalstrahlung in Kollektorebene Wirkungsgradfaktor Koeffizient Koeffizient Koeffizient Koeffizient Nutzwärmestrom Kollektor thermodynamische Temperatur Zeit Windgeschwindigkeit Absorptionsgrad Emissionsgrad Einstrahlzahl Transmissionsgrad Glasabdeckung Winkel zwischen diffuser Sonneneinstrahlung und Flächennormalen Winkel zwischen direkter Sonneneinstrahlung und Flächennormalen mittlere Fluidtemperatur Umgebungstemperatur

Parameter	Programm- variable	Beschreibung	Einheit
1	COLAR	Kollektorfläche	[m]
2	IOPTCT	Regelungsoption	[-]
	ssenstrom als Eingabegrö		
IOPTCT = 2: Kol	lektoraustrittstemperatur	als Eingabegröße, Massenstrom geregelt	
3	$F' \cdot \tau_G^* \cdot \alpha_A^*$		[1]
4	$F' \cdot \tau_G * \cdot \alpha_A * \cdot b_0$		[1]
5	F'·k ₀ ·*		$[kJ/(hm^2K)]$
6	$F' \cdot k_1 *$	Koeffizienten	$[kJ/(m^3K)]$
7	$F' \cdot k_1$	für	$[kJ/(hm^2K^2)]$
8	$F' \cdot \epsilon_A * \cdot \sigma \cdot \phi_B \cdot \epsilon_B$	Kollektorgleichung	$[kJ/(hm^2K^4)]$
9	$F'{\cdot}\epsilon_{A}{*\cdot}\sigma{\cdot}\phi_{Geb}{\cdot}\epsilon_{Geb}$		$[kJ/(hm^2K^4)]$
10	$F' \cdot \epsilon_A * \cdot \sigma \cdot \phi_{Sky}$		$[kJ/(hm^2K^4)]$
11	C_K/A_K		$[kJ/m^2K]$
12	TETADF	Einfallswinkel zwischen diffuser Sonneneinstrahlung und Flächennormalen θ_e	[°]
13	CPFL	spezifische Wärmekapazität des Kollektorflui	ds [kJ/kgK]
Zusätzliche Paran	neter bei Regelungsoption	n 2 :	
14	MCOLMI	minimaler Kollektormassenstrom	[kg/h]
15	MCOLMA	maximaler Kollektormassenstrom	[kg/h]
Eingabegröße	Programm- variable	Beschreibung	Einheit
1	TINC	Kollektoreintrittstemperatur	[°C]
2	MCOL	Kollektormassenstrom (IOPTCT = 1)	[kg/h]
	TOUC	Kollektoraustrittstemperatur (IOPTCT = 2)	[°C]
3	TAMB	Umgebungstemperatur	[°C]
4	WWIND	Windgeschwindigkeit	[m/h]
5	EGLOB	globale Bestrahlungsstärke in Kollektorebene	[kJ/hm²]
6	EDFU	diffuse Bestrahlungsstärke in Kollektorebene	[kJ/hm²]
7	TETADR	Einfallswinkel zwischen direkter Sonnen- einstrahlung und Flächennormalen	[°]
8	TGRD	Bodentemperatur	[°C]
9	TBUI	Gebäudewandtemperatur	[°C]
10	TSKY	Himmelstemperatur	[°C]
11	FSHAD	Abschattungsfaktor (= 1 ohne Abschattung)	[-]

	variable	0	
1	TOUC	Kollektoraustrittstemperatur	[°C]
	lstand wird die Austrit on 5 kg/(h·m2) herrsch	tstemperatur ausgegeben, die bei einem bezogenen en würde.)	Kollek-
2	MCOL	Kollektormassenstrom	[kg/h]
3	QCOL	Nutzwärmeleistung des Kollektors	$[kJ/hm^2]$
4	COLEFF	Kollektorwirkungsgrad	[-]
5	TOUMAX	maximale während des Simulationslaufs	[°C]
		aufgetretene Kollektoraustrittstemperatur	

Beschreibung

Einheit

Parameter für typische Flachkollektoren:

Programm-

Ausgabegröße

$F' \cdot \tau_G^* \cdot \alpha_A^*$	0.8 (F' = 0.9)
$F' \cdot \tau_G * \cdot \alpha_A * \cdot b_0$	0,2
F'·k ₀ ·*	$12,0 \text{ kJ/(hm}^2\text{K})$
F'·k ₁ *	0
$F' \cdot k_1$	$0.06 \text{ kJ/(hm}^2\text{K}^2)$
$F' \cdot \epsilon_A * \cdot \sigma \cdot \phi_B \cdot \epsilon_B$	0
$F' \cdot \epsilon_A * \cdot \sigma \cdot \phi_{Geb} \cdot \epsilon_{Geb}$	0
$F' \cdot \epsilon_A * \cdot \sigma \cdot \phi_{Sky}$	0
C_K/A_K	5,0 kJ/m ² K * Füllmenge [l/m ²]

Parameter für typische Schwimmbadabsorber:

a) ohne Strahlungsterm bei Wärmeverlusten, ohne Windeinfluss (anwendungsbezogener Einsatz)

$F' \cdot \tau_G^* \cdot \alpha_A^*$	0.8 (F' = 0.9)
$F' \cdot \tau_G^* \cdot \alpha_A^* \cdot b_0$	0
F'·k ₀ ·*	$75,0 \text{ kJ/(hm}^2\text{K})$
F'·k ₁ *	0
$F' \cdot k_1$	0
$F' \cdot \epsilon_A * \cdot \sigma \cdot \phi_B \cdot \epsilon_B$	0
$F' \cdot \varepsilon_A * \cdot \sigma \cdot \phi_{Geb} \cdot \varepsilon_{Geb}$	0
$F' \cdot \epsilon_A * \cdot \sigma \cdot \phi_{Sky}$	0
C_K/A_K	4,5 kJ/m ² K * Füllmenge [l/m ²]

b) mit Strahlungsterm bei Wärmeverlusten, mit Windeinfluss (wissenschaftlicher Einsatz)

$$\begin{split} F' \cdot \tau_G^* \cdot \alpha_A^* & 0,8 & (F' = 0,9) \\ F' \cdot \tau_G^* \cdot \alpha_A^* \cdot b_0 & 0 \\ F' \cdot k_0 \cdot^* & 18,0 \text{ kJ/(hm}^2\text{K}) \\ F' \cdot k_1^* & 0,0016 \text{ kJ/(m}^3\text{K}) \end{split}$$

 $F' \cdot k_1$ 0

 ϵ_{B}

 ϵ_{Geb}

1,5·10-7 kJ/($h \cdot m^2 \cdot K^4$), gering selektive Oberfläche F'·ε_A*·σ

je nach Ausrichtung des Absorbers zu Boden, Himmel und Nachbargebäuden, z.B.: $\phi_B + \phi_{Geb} + \phi_{Sky} \!=\! 1$

horizontal ohne Hindernisse: $\phi_B=0$; $\phi_{Sky}=1$; $\phi_{Geb}=0$

vertikal ohne Hindernisse: ϕ_B =0,5; ϕ_{Sky} =0,5; ϕ_{Geb} =0

0,9 ... 0,95 (Pflastersteine, Asphalt)

0,9 (heller Anstrich)

4,5 kJ/m²K * Füllmenge [l/m²] C_K/A_K